1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

		Oman was		ak i low worr		
Date	7/29/2011					
Engineer	Jack Norbe	erg				
Project	Homewood	l Mountain Res	ort - Winter C	alculations		
Watershed	Existing Co	onditions WS-5				
Area (acres)	5.4	Elevation (ft)	7408	Return Period (years)		100
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)
Overland Flow	500	0.19	0.4			14.04
Collector 1	616	0.23	0.1	5.4	15	1.81
Collector 2						
Collector 3						
				Total Response	Time (minutes)	15.85
				Unit Peak	Flow (cfs/acre)	1.90
			Infiltra	ation Rate (in/hr)	0.26	
			Infiltration I	actor (cfs/acre)	0.31	
			Per	cent Impervious	90	
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1	-Percent Impervi	ous) x Area x	10.13

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509

(775) 329-4955

Date	7/29/2011						
Engineer	Engineer Jack Norberg						
Project	Homewood	l Mountain Res	ort - Winter C	alculations			
Watershed	Existing Co	onditions WS-6					
Area (acres)	2.2	Elevation (ft)	100				
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)	
Overland Flow	100	0.30	0.4	发展的表现的		4.66	
Collector 1	401	0.07	0.1	2.2	15	2.32	
Collector 2							
Collector 3							
				Total Response	Time (minutes)	6.98	
				Unit Peak	Flow (cfs/acre)	2.60	
			Infiltra	ation Rate (in/hr)	0.26		
			Infiltration I	actor (cfs/acre)	0.31		
			Per	cent Impervious	90		
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1	-Percent Impervi	ous) x Area x	5.73	

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509

(775) 329-4955

Date	7/29/2011						
Engineer	Engineer Jack Norberg						
Project	Homewood	l Mountain Res	ort - Winter C	alculations			
Watershed	Existing Co	onditions WS-7					
Area (acres)	145.7	Elevation (ft)		100			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)	
Overland Flow	500	0.18	0.4			14.26	
Collector 1	4308	0.27	0.1	145.7	15	5.24	
Collector 2							
Collector 3							
				Total Response	Time (minutes)	19.50	
				Unit Peak	Flow (cfs/acre)	1.70	
			Infiltra	ation Rate (in/hr)	0.28		
			Infiltration F	actor (cfs/acre)	0.33		
			Per	cent Impervious	90		
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1	-Percent Impervi	ous) x Area x	242.81	

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011					
Engineer	Jack Norbe	erg				
Project	Homewood	Mountain Res	ort - Winter C	alculations		
Watershed	Proposed (Conditions WS-	1			
Area (acres)	28.3	Elevation (ft)	6702	Return Period (years)		100
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)
Overland Flow	516	0.23	0.4			13.46
Collector 1	1942	0.38	0.1	20.7	15	3.36
Collector 2	1051	0.06	0.025	24.5	1	0.74
Collector 3						
				Total Response	Time (minutes)	17.56
				Unit Peak	Flow (cfs/acre)	1.65
			Infiltra	tion Rate (in/hr)	0.15	
			Infiltration F	actor (cfs/acre)	0.18	
			Per	cent Impervious	90	
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1	-Percent Impervi	ous) x Area x	40.02

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509

(775) 329-4955

Date	7/29/2011						
Engineer	Engineer Jack Norberg						
Project	Homewood	l Mountain Res	ort - Winter C	alculations			
Watershed	ProposedC	onditions WS-2	2				
Area (acres)	42.4	Elevation (ft)		100			
	Length (ft) Slope (ft/ft) Manning's n Contributing Side Slope value Area (acres) (ft/ft)					Response Time (minutes)	
Overland Flow	500	0.27	0.4			12.63	
Collector 1	1853	0.33	0.1	28.2	15	3.12	
Collector 2	1344	0.05	0.04	33.7	15	2.30	
Collector 3	707	0.01	0.025	38.1	1	1.09	
				Total Response	Time (minutes)	19.15	
		THE TALK TOTAL		Unit Peak	Flow (cfs/acre)	1.55	
			Infiltra	tion Rate (in/hr)	0.26		
			Infiltration F	actor (cfs/acre)	0.32		
			Per	cent Impervious	90		
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1-	Percent Impervio	ous) x Area x	57.77	

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011					
Engineer	Jack Norbe	erg				
Project	Homewood	Mountain Res	ort - Winter C	alculations		
Watershed	Proposed (Conditions WS-	3			
Area (acres)	Area (acres) 10.0 Elevation (ft) 6593 Return Period (years)					
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)
Overland Flow	500	0.18	0.4			14.36
Collector 1	1647	0.30	0.1	8.6	15	3.86
Collector 2	581	0.07	0.11	9.2	1	1.52
Collector 3						
				Total Response ⁻	Time (minutes)	19.74
				Unit Peak	Flow (cfs/acre)	1.45
			Infiltra	tion Rate (in/hr)	0.27	
			Infiltration F	actor (cfs/acre)	0.33	
			Per	cent Impervious	90	
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1-	Percent Impervio	ous) x Area x	13.08

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011					
Engineer	Jack Norbe	erg				
Project	Homewood	Mountain Res	ort - Winter C	alculations		
Watershed	Proposed (Conditions WS-	4			
Area (acres)	67.4	Elevation (ft)	6652	Return Period (years)		100
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)
Overland Flow	500	0.18	0.4			14.26
Collector 1	2448	0.26	0.1	57.5	15	3.81
Collector 2	1456	0.04	0.02	64.8	3	0.93
Collector 3						
				Total Response	Time (minutes)	19.00
				Unit Peak	Flow (cfs/acre)	1.58
			Infiltra	tion Rate (in/hr)	0.51	
			Infiltration I	actor (cfs/acre)	0.62	
			Per	cent Impervious	90	
Watershed Pea Infiltration Facto	The second secon): Area x Unit	Peak Flow-(1	Percent Impervio	ous) x Area x	98.43

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

		Oman was	oronica i ci	ait i iow won	torioot			
Date	Date 7/29/2011							
Engineer	Jack Norbe	erg						
Project	Homewood	l Mountain Res	ort - Winter C	alculations				
Watershed	Proposed (Conditions WS-	5					
Area (acres)	5.4	5.4 Elevation (ft) 7408 Return Period (years) 100						
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.19	0.4			14.04		
Collector 1	631	0.22	0.1	4.8	3	1.32		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	15.36		
				Unit Peak	Flow (cfs/acre)	1.75		
			Infiltra	tion Rate (in/hr)	0.22			
		-	Infiltration F	actor (cfs/acre)	0.26			
			Per	cent Impervious	90			
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1	-Percent Impervi	ous) x Area x	8.34		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

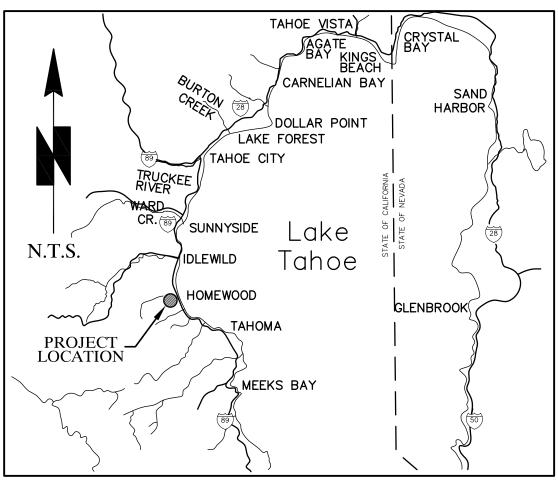
		Oman wa	croned re	ak i low worr	Concet	
Date	7/29/2011					
Engineer	Jack Norbe	erg				
Project	Homewood	Mountain Res	ort - Winter C	alculations		
Watershed	Proposed (Conditions WS-	6			
Area (acres)	2.2	Elevation (ft)	7565	Return Period (years)		100
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)
Overland Flow	180	0.32	0.4			6.52
Collector 1	376	0.30	0.22	2.2	3	1.54
Collector 2						
Collector 3						
				Total Response	Time (minutes)	8.06
				Unit Peak	Flow (cfs/acre)	2.50
			Infiltra	tion Rate (in/hr)	0.23	
			Infiltration F	actor (cfs/acre)	0.28	
			Per	cent Impervious	90	
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1-	Percent Impervio	ous) x Area x	5.52

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

		Oman wat	croned re	ak i low worr	Concet	
Date	7/29/2011					
Engineer	Jack Norbe	erg				
Project	Homewood	l Mountain Res	ort - Winter C	alculations		
Watershed	Proposed (Conditions WS-	7			
Area (acres)	145.7	Elevation (ft)	7465	Return Period (years)		100
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)
Overland Flow	500	0.18	0.4			14.26
Collector 1	4308	0.27	0.1	145.7	15	5.24
Collector 2						
Collector 3						
				Total Response	Time (minutes)	19.50
				Unit Peak	Flow (cfs/acre)	1.70
			Infiltra	ition Rate (in/hr)	0.28	
			Infiltration F	actor (cfs/acre)	0.33	
			Per	cent Impervious	90	
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1-	Percent Impervi	ous) x Area x	242.84

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

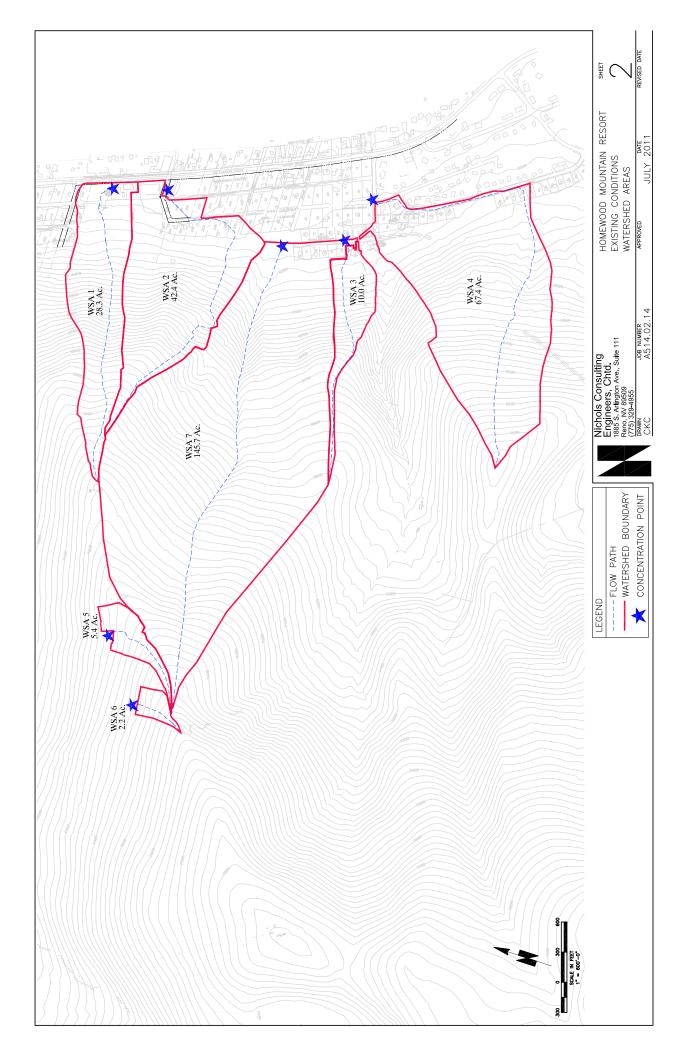

Preliminary	/ Drainage	Report

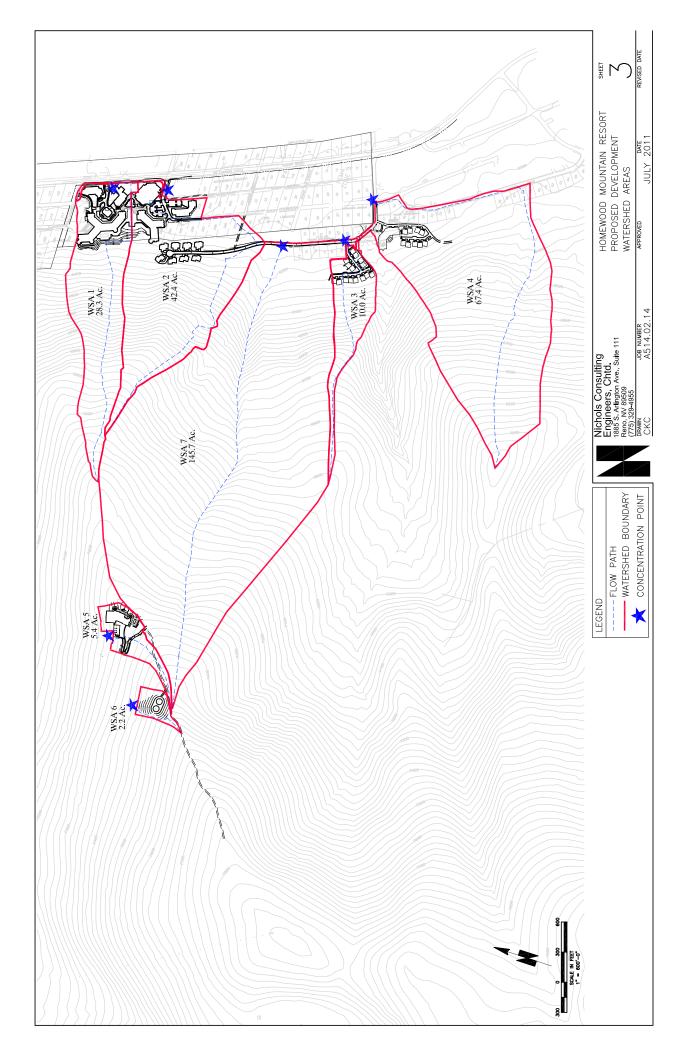
Homewood Mountain Resort

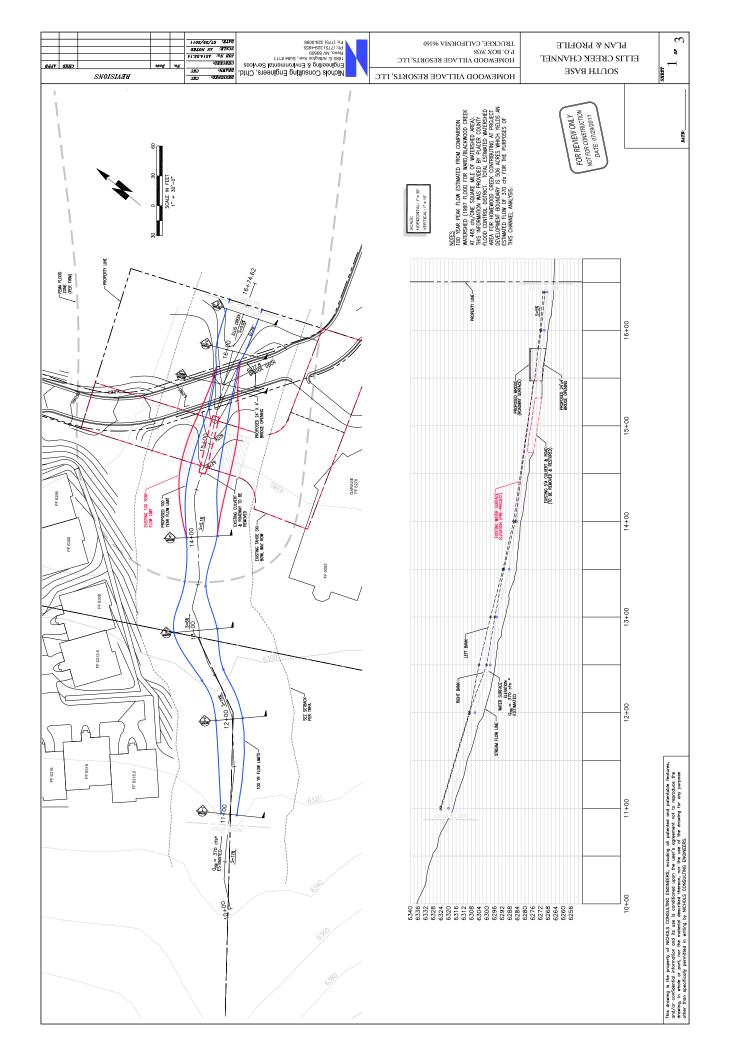
<u>December 2010</u> Placer County, California

Appendix C

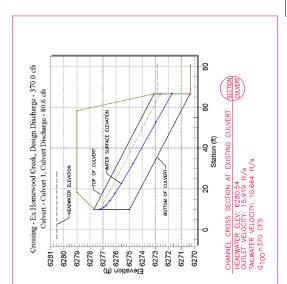
Figures

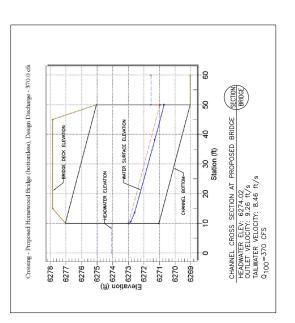


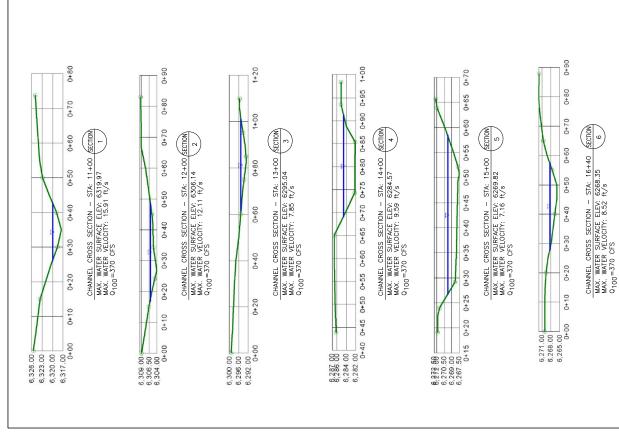

VICINITY MAP


Nichols Consulting Engineers, Chtd. 1885 S. Arlington Ave., Suite 111 Reno, NV 89509 (775) 329-4955 DRAWN VICINITY/SITE MAP
HOMEWOOD MOUNTAIN RESORT
PLACER COUNTY
CALIFORNIA

FIGURE


DRAWN JOB NUMBER APPROVED DATE REVISED DATE CKC A514.02.14 JULY 2011



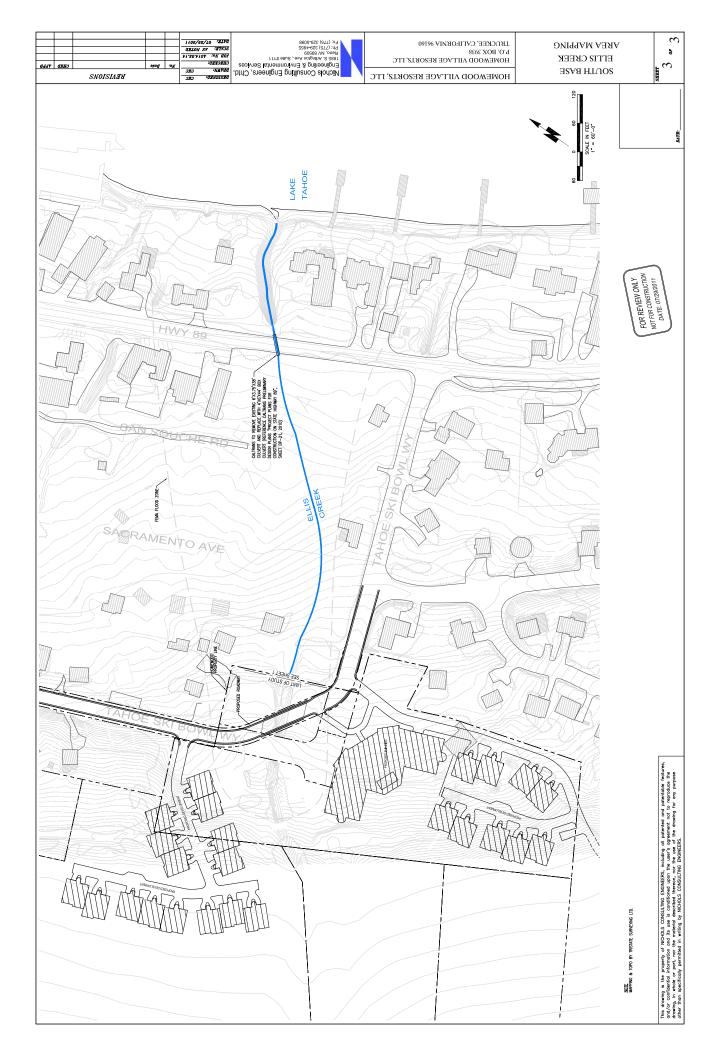


Nichols Consulting Engineers, Chtd. Engineering & Environmental Services Reach, WY 89500 Pr. (775) 329-4956 Fr. (775) 329-4956 TRUCKEE, CALIFORNIA 96160 CROSS SECTIONS HOMEWOOD VILLAGE RESORTS, LLC STREAM DAYLIGHTING HOMEWOOD VILLAGE RESORTS, LLC

SNOISIATH

This dentities the property of HORISCS CONSULIND COUNTRIES on Exercising a literated and personal neturement of the conference and the use is considered usine the user's agreement not to reproduce the density, in whose or part, not mentional destances thereon, not not use and the density in whose other control mention destances thereon, not the use of the drowing for ony purpose offensity in the personal person and the personal person and the personal person

FOR REVIEW ONLY NOT FOR CONSTRUCTION DATE: 07/29/2011


 \mathfrak{C}

DATE

40

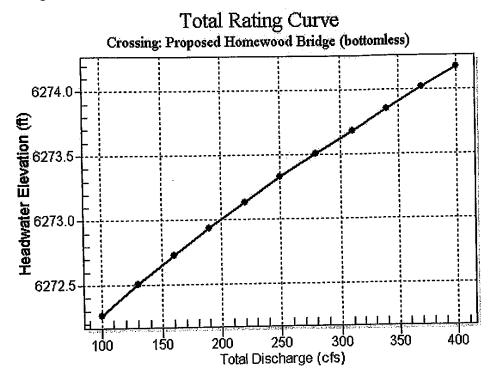
7

SOUTH BASE

Placer County, California

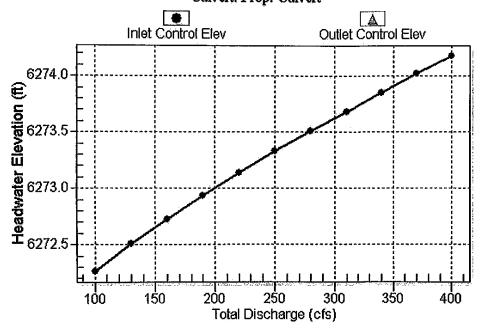
Appendix D

Ellis Creek Channel Analysis

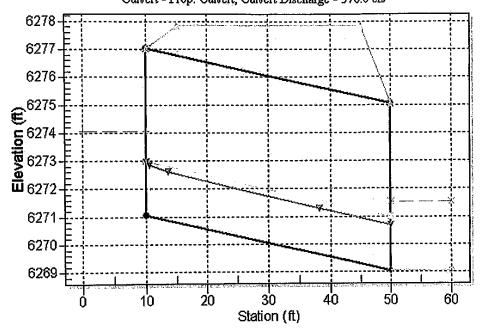

Table 1 - Summary of Culvert Flows at Crossing: Proposed Homewood Bridge

Headwater Elevation (ft)	Total Discharge (cfs)	Prop. Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
6272.27	100.00	100.00	0.00	1.
6272.51	130.00	130.00	0.00	1
6272.73	160.00	160.00	0.00	1
6272.94	190,00	190.00	0,00	1
6273,14	220.00	220.00	0.00	1
6273.33	250.00	250.00	0.00	1
6273.51	280.00	280.00	0.00	1
6273.68	310.00	310.00	0.00	1
6273.85	340.00	340.00	0.00	1
6274.02	370.00	370.00	0.00	. 1
6274.18	400.00	400.00	0.00	1
6277.80	1114.98	1114,98	0.00	Overtopping

Table 2 - Culvert Summary Table: Prop. Culvert


Total Discharge (cfs)	Culvert Discharge (cis)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Oullet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tallwaler Depth (ft)	Oullet Velocity (fl/s)	Tailwaler Velocily ((t/s)
100.00	100.00	6272.27	1.265	0.0*	1-S2n	0.732	0.790	0.740	1.388	5.628	6.034
130.00	130.00	6272.51	1,506	0.0	1-S2n	0.855	0.945	0.875	1:567	6.185	6.461
160.00	160.00	6272.73	1,727	0.01	1-S2n	0.978	1.100	0.990	1.723	6.726	6.819
190.00	190.00	6272.94	1.936	0.0*	1-S2n	1.101	1.243	1:103	1.862	7.172	7,128
220.00	220.00	6273.14	2.136	0.0	1-S2n	1.217	1.363	1.222	1.989	7.499	7.402
250.00	250.00	6273,33	2.327	0.0	1-S2n	1.305	1.482	1.305	2.105	7,977	7.649
280.00	280.00	6273.51	2.509	0,0*	1-S2n	1.393	1.602	1,401	2.213	8.324	7.874
310,00	310.00	6273.68	2,684	0.0*	I-S2n	1.481	1.722	1.482	2.315	8.715	8.081
340,00	340.00	6273.85	2.855	0.0*	1-S2n	1.570	1.835	1.575	2.410	8,994	8.274
370.00	370.00	6274.02	3,021	0.0*	1-S2n	1.658	1.936	1.665	2.500	9.260	8.455
400.00	400.00	6274.18	3.179	0.0*	1-S2n	1.746	2.036	1.746	2.587	9,543	8.623

Rating Curve Plot for Crossing: Proposed Homewood Bridge (bottomless)


Culvert Performance Curve Plot: Prop. Culvert

Performance Curve Culvert: Prop. Culvert

Water Surface Profile Plot for Culvert: Prop. Culvert

Crossing - Proposed Homewood Bridge (bottomless), Design Discharge - 370.0 cfs
Culvert - Prop. Culvert, Culvert Discharge - 370.0 cfs

Site Data - Prop. Culvert

Site Data Option: Culvert Invert Data

Inlet Station: 10.00 ft Inlet Elevation: 6271.00 ft Outlet Station: 50.00 ft Outlet Elevation: 6269.00 ft

Number of Barrels: 1

Culvert Data Summary - Prop. Culvert

Barrel Shape: Arch-Box, Concrete

Barrel Span: 24.00 ft
Barrel Rise: 6.00 ft
Barrel Material: Concrete
Embedment: 0.00 in

Barrel Manning's n: 0.0150 (top and sides)

Manning's n: 0.0500 (bottom) Inlet Type: Conventional

Inlet Edge Condition: Square Edge with Headwall

Inlet Depression: NONE

Table 3 - Downstream Channel Rating Curve (Crossing: Proposed Homewood

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number	
100.00	6270,39	1.39	6.03	4.33	1.13	
130.00	6270.57	1.57	6.46	4.89	1,15	
160.00	6270.72	1.72	6.82	5.38	1.17	
190.00	6270.86	1.86	7.13	5.81	1.18	
220.00	6270.99	1.99	7.40	6.21	1.19	
250.00	6271.11	2.11	7.65	6.57	1.20	
280.00	6271.21	2.21	7.87	6.91	1.21	
310.00	6271.31	2.31	8.08	7.22	1.22	
340.00	6271.41	2.41	8.27	7.52	1.23	
370.00	6271.50	2.50	8.45	7.80	1.23	
400.00	6271.59	2.59	8.62	8.07	1.24	

Tailwater Channel Data - Proposed Homewood Bridge (bottomless)

Tailwater Channel Option: Trapezoidal Channel

Bottom Width: 5.00 ft

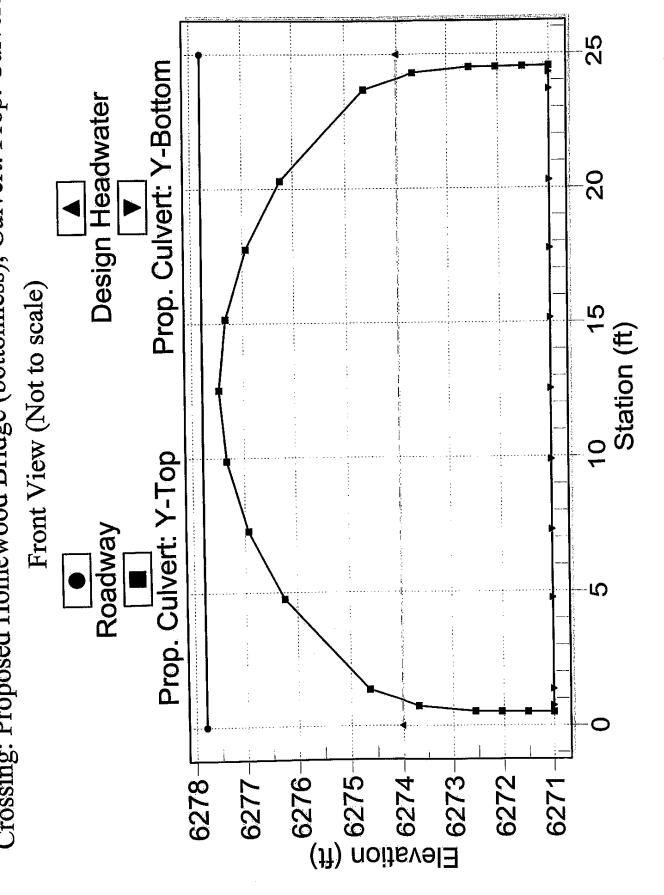
Side Slope (H:V): 5.00 (_:1)

Channel Slope: 0.0500

Channel Manning's n: 0.0500

Channel Invert Elevation: 6269.00 ft

Roadway Data for Crossing: Proposed Homewood Bridge (bottomless)


Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 25.00 ft

Crest Elevation: 6277.80 ft Roadway Surface: Paved

Roadway Top Width: 30.00 ft

Crossing: Proposed Homewood Bridge (bottomless), Culvert: Prop. Culvert

